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Abstract. Starting with a polar decomposition of the wavefunction, it is shown that the 
probability and energy density currents are explicit functionals of the probability and 
energy densities. At a non-reduced level and for a ( n ,  + n,)-particle system, the expression 
of these functionals is exactly calculated. This leads to a system of coupled equations 
equivalent to the Schrodinger equation. The probability and energy densities are unknown. 
Some properties of the functionals are analysed and the particular case of a one-body 
Hamiltonian studied. 

1. Introduction 

In a recent paper on the extension of the density functional approach (DFA) to 
time-dependent (TD) problems (for a general discussion on DFA, with many references, 
see Ghosh and Deb (1982)), Runge and Gross (RG) (1984) have demonstrated two 
theorems. Theorem 1 states the invertibility of the mapping between U ( r ,  t )  and the 
density p ( r ,  t )  for the TD Schrodinger &quation: 

Yith p ( r ,  t )  = ( $ ( t ) l $ + ( r ) & r ) l $ ( t ) )  and C ( r ,  t )  a single-particle TD potential on R3.  
U( r, t )  consists of an internal part which can be TD-like time-dependent Hartree-Fock 
(TDHF) potentials and eventually an external TD perturbative part. 

Theorem 2 states the existence of a mapping between p ( r ,  t )  and the associated 
current density J (  r, t ) ,  i.e. J (  r, t )  = Q ( p (  r, t ) )  with Q a functional to be determined. 

Xu and Rajagopal (1985) have already commented on the demonstration given by 
RG for theorem 1 and on the fact that for a given initial p ( r ,  to) only the mapping 
J (  r, t )  = P( U( r, t))  can be explicitly inverted, not J (  r, t )  = Q ( p ( r ,  2)). 

We comment here in two steps on theorem 2. First, we demonstrate, for a stable 
inhomogeneous quantum system ( S )  of n, electrons and n2 nuclei, that even at the 
many-body level (i.e. when the densities like p are defined on the entire configuration 
space and then called non-reduced densities) J, is not only a p functional. The choice 
of the non-reduced level (NR) enables us to obtain the exact expression of each TD 

density functional and to demonstrate their equivalence with the TD( n, + nz)  
Schrodinger equation. 

The first step is divided into two parts. In 0 2, we recall the Madelung decomposition 
and introduce the energy density E and its associated current J, .  In 8 3, we give the 
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exact expression of the functional J, = J, (p ,  E )  and J, = J,(p,  E ) ,  and demonstrate 
their equivalence with the Schrodinger equation. 

In a second step (§ 4), we apply these results to the analysis of the J, and J, functional 
properties and to give a condition such that J, is a TD functional of the densities p 
and E.  Finally, we study the TD potential case at the reduced level. 

In O O  2 and 3, only time-independent (TI) potentials are considered. The TD 

evolution regime is then induced by a non-stationary initial-state excitation. This 
choice is based on the fact that for the internal part of the potential in the Hamiltonian, 
one goes from TI potentials on the configuration space to TD potentials on R3 by 
truncation of the BBGKY hierarchy as in TDHF. Therefore DFA must be the same in 
the TI and TD cases. 

2. The energy densities E and J, 

On the configuration space ( Cs) ,  the wavefunction + ( X , ,  . . . XI,,, , X , ,  . . . X2", ,  t )  of 
S is the solution of the Schrodinger equation 

with the Xlk ( k  = 1, n,) electron and the x 2 k  ( k =  1, nz) nucleus coordinates. 
The Hamiltonian is written as usual 

where @(X,,) is the TI Coulombic potential between the n, + n2 particles considered 
in S, and mDj their respective mass. 

We know that one way to DFA at the NR level is to substitute + ( X &  t )  in ( 2 )  with 
its polar decomposition form (Ghosh and Deb 1982). This substitution, usually called 
the Madelung decomposition (Madelung 1926), gives the set of two coupled equations 

In (4) and (5) the polar decomposition of +(&, t )  has been taken as 

$(Xark, t )  = 4 ( X a k ,  t ,  exp ie(xak, t )  ( 6 )  

with 4 and 8 two real valued functions on C, x R, solutions of (4) and ( 5 )  for a given 
initial condition +(Xu, ,  to).  4 and 8 must also verify the conditions 

for the phase part 8 with E the internal energy of S. 

law: 

J ( c I ( x , k ,  t )$*(X,k,  t )  dT= 1 for the module part 4 and $ * ( x , k ,  t )H$(X,k,  t )  d7 = E 

After some calculations, equation (4) gives the classical probability conservation 

( a l a r )  p + div(J,) = 0 

with 
(7) 
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and  

2 “ P  

div= V , .  
p = 1  j = 1  

M - ’  is the inverse diagonal mass matrix with mkk = m l k  for k = 1, n and mkk = m2k for 
k = n , + l ,  n l + n , .  

The factorisation in ( 5 )  of the C, velocity V defined by its ‘vectorial components’ 
Vpj = hm,;’V,t9(Xmk, t )  leads to the usual hydrodynamic equation 

(10) 
a 
at -( M V )  + i M .  grad( 1 1  Vi12) = -grad(g) 

with g = g ( X , , ,  t )  a real valued function on Cs x R defined by 

g ( x a k ,  t )  = ( s P ’ ” ( x a k ,  t ) )P”’(Xak,  t ) .  (11) 

At this stage, everything is in agreement with the hydrodynamic formalism on Cs x R. 
Beginning with the set of unknown functions (4,  0 )  on Cs x R, we arrive at the set 
(p ,  V )  in ( 7 )  and (10) or at the set (p ,  J,)  also on C, x R. However, the last two sets 
have an ‘inhomogeneous’ composition of one scalar and one vectorial function. There- 
fore, it is not possible to decompose J,, at least on p, to extract the response coefficients 
of S to a non-stationary initial excitation. 

The ‘homogenisation’ of the unknown set can be realised with an  exchange of p 
by a vectorial, or J, by a scalar, function. The second solution is more interesting in 
the context of the response analysis of S. However, in order to introduce a new set 
of unknown functions at the NR level, two conditions must be verified: 

(a) the existence of a coupled equation system which determines the two functions 
of the set, and 

(b) this system must be equivalent at the NR level to the Schrodinger equation (2). 
By clustering the second left-hand term of (10) with g, equation (10) is rewritten 

with (9): 

a t  P =-grad(;). 

The scalar real valued function E = & ( X a L ,  t )  on Cs x R is defined by 

&(Xak,  t )  = &!(xu,, f ) + f p - ’ ( X u k ,  t)llM1’2 ’ Jp(xak,  f ) l 1 2 .  (13) 

Following conditions (a )  and  (b), the set ( p ,  E )  will be a useful set of unknown functions 
if 

(c) E represents an  interesting physical quantity, 
(d)  J, is an explicit ( p ,  E )  functional, and 
(e) there exists an  equation other than (7), which governs the time and spatial 

evolution of E, to close the system of equations. 
For (c), it can be easily seen that E has the dimension of an  energy density. For 

example, if we take (CI(x&, t )  = q5n*(x,k) exp - ( i /h )E,  with E ,  a non-degenerate ele- 
ment of the discrete spectrum of H and q5” the associated real valued eigenfunction, 
J, = 0 from (9) and E = ( fi+,,)4, = E,p  from (13). 
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For (d),  after a formal integration of (12), we obtain 

showing that J, is a ( p ,  E )  functional. 
The direct demonstration of (d) without polar decomposition of the wavefunction 

and the study of (e) is dealt with in the next section. We need, first, to prove that E 

given by (13 )  is equal to the energy density 4[(H$)$*+(H$)*$] defined for example 
by Jauch (1968). Then the energy density current J, can be properly defined and the 
conservation equation of E introduced in a natural way. 

Beginning with the Lagrangian density associated with the wavefunction $(x& t )  
written as usual (Schiff 1968): 

and for an infinitesimal transformation T & ( t , h ( & k ,  t ) )  = $(x& ? + A t ) ,  the Noether 
theorem leads to the energy conservation equation (see Gaudin (1967) and for a 
topological analysis Westhenholz (1979)) 

( a l a ? )  I -div J = 0 (16) 

with 

and for a Jaj component of J :  

p indexes the particle, j its coordinates on C,, q!tr = a $ / a t  and $aj = a$/ax', .  

of (17) and (18) is straightforward and it comes from (16): 
With symmetrical decomposition of the term V,$* * Vaj$ in ( 1 9 ,  the calculation 

a 
-{;[( a t  fi$)*$ + (fi+)$*]} + div( J , )  = 0 (19) 

with J,  = J,(Xmk, t )  a real valued vectorial function defined on C, x R and equal to 

J, =ffi2M-'-(  $-(grad a $)*-(grad $)--$*+$*--(grad a a $)-(grad $)*,a) a (20) 
a t  

which is equal to the energy density current defined by Jauch. 
The vectorial function J in (16) is not equal to J, .  In fact from (17) and (18) two 

factorisations are possible: equation (16) or equation (19). However, only equation 
(19) leads to densities, like the densities p and J, in (7), corresponding to field operator 
averages. For example 

which is certainly not the case for I in (16). 
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We demonstrate now that the density E obtained in (12) is equal to the energy 
density defined by Jauch. The polar decomposition of $ gives 

B -h2 
I?$ = eie( -[Agj4 +2i(V,4 - V,O) 

Pj j = l  2m 

Then 

which is equal to E from (9) and ( 1 1 ) .  

3. Equivalence between (p,  E )  and t,h at the NR level 

In the last section, E and J, were obtained from hydrodynamical equations (7) and 
(10) which are evolution equations of (p ,  J,)  or ( p ,  V ) .  From condition (a), two new 
coupled equations in p and E are needed to use ( p ,  E )  as an unknown set of functions. 

One of these two equations has already been derived because, with (14) substituted 
in (7), we obtain 

d p  a t  +diu[ pM-' lof grad( 2) dt'] = 0 

which is only a (p ,  E )  equation. 
Because we have proved that E is equal to (21), the development of J, on ( p ,  E )  

used to derive (24) can be obtained without polar decomposition. From the usual 
definition of J, comes 

h 
21 

J, = 7 p M - I  * grad(1og $ -log $*) ( 2 5 )  

or 

a'(t') +( t ' ) - '*  d + ( r ' ) *  dr') (26) + ( ? ' ) - I  -- ( Jof a t  at' 

h 
21 

J, = 7 p M - I  - grad 

and the development (14) of J, on ( p ,  E )  is found again with ( 2 )  in (26). It is also 
interesting to note that J, depends on the gradient of p because (14) can be developed 
as 

J, = ( lof % dr') M-I grad p - 

- EM-' . grad( f ' EO dt'). 
0 P ( t ' )  

The J, functional does not follow the Fourier law J, = a grad p proposed recently by 
Ioannidou (1983). The coefficients of grad p and grad E are TD at the NR level and J, 
is non-linear in (p ,  E ) .  
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The second equation must be constructed with conservation equation (19) because 
the dynamic (10) and the conservation ( 7 )  equation have already been used to derive 
(24). From (20), J,  is rewritten 

or with a polar decomposition of rl/: 

However, fi$ has been already calculated in P 2 and the substitution of (22) in (29) gives 

1 
h + - P - ~ M *  J,p-'IIM''' * J,Il'-$h grad(p-' div(J,)) 

or, after simplification, 

:h*pM-' . grad( f div ( J p ) )  (31 )  
J E  

P 
J,  =d--- 

which is only a ( p ,  E )  functional. 
J, is composed of two terms: one 'classical', the energy current calculated from 

the speed J , / p ,  and one purely quantum. The contribution of this term to J,  is greater 
according to the extent of the variation of J,, normalised by p ,  on C,. 

As in J, in (27), J,  can be developed as 

J,  = (1' a d t ' ) M - l  . grad E - 
0 P ( t ' )  

- p M - '  . grad(: 1' -dt)  - - M - ' p  h 2  
P 0 P ( f )  4 

The J, functional does not follow a Fourier law and is non-linear in p and E .  

written using (13) ,  (19), (23) and (32): 
The equation which completes (24) and fulfils conditions (a) and (e) can now be 

d 'cdiv[  a t  [ E M - '  - j0' grad( ""> P ( 0  dll] - E p M - l  4 

x grad{ div[ pM-' * Io' 
p ( t ' )  dt']} ] = 0. (33) 

The equation system (7) and (19) is now closed. For a given initial condition $( to) ,  
the equivalence of (2) with this system (condition (b)) follows from (32): for & ( t o )  
and p ( t o )  calculated from $ ( t o ) ,  the function p ( t )  and E ( ? )  solution of (24) and (33) 
lead directly from (14) to Jp(  t )  and from (9) to the phase e( t ) .  Finally, from p(  t )  and 
e( t),  $ ( t )  is reconstructed with JI( t )  = P I ' * (  t )  exp io( t ) .  
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With this equivalence, the equivalence chain between all the possible sets of densities 
is completed: 

( P ,  J,) 

(P, E )  
ccIe(ccI,ccI*)e(4,e)@b, V ) Z  0 . 

At the NR level ( p ,  V )  or (p ,  J,)  are used to construct the hydrodynamic form of 
the Schrodinger equation. ( p ,  E )  is more appropriate to characterise the intrinsic 
response of S to an excitation: if p and E are taken as independent unknown functions, 
J, and J, become the response functions of S. 

The important parts in J, and J, are the response coefficients which carry all the 
intrinsic physical properties of S in the range of its excitation. In this context, one 
use of ( p ,  E )  for intramolecular behaviours like IVR (intramolecular vibrational relaxa- 
tion) or ICT (intramolecular charge transfer) is to calculate energy and charge transfer 
(or diffusion) coefficients. For example, E is a very useful function for taking account 
of non-adiabatic dynamic coupling, an important effect in IVR (Joachim 1984). Such 
behaviour is usually characterised, through a spectral decomposition of the wavefunc- 
tion, by the associate Hamiltonian spectrum properties (Joachim 1985) which lead 
only to a trajectory-like classification: regular, stochastic or chaotic. 

4. Properties of the currents Jp and J, 

The first property we propose to discuss concems the characteristic of the response of 
S starting from grad(E/p). Equation (12) leads to the following. 

For a preparation in a stationary state, E is proportional to p. The proportionality 
coefficient is a constant for TI potentials and the TD current does not exist. TI currents 
exist (vortexes for example) if the eigenfunction of the prepared stationary state is 
complex-valued. 

For a preparation in a non-stationary state, the initial difference between E and p 
governs the apparition of the TD currents J, and J, .  

The second property of J, and J, involves the grad p and grad E coefficients in 
(27) and (32). The decomposition of (14) and (31) in (27) and (32) was used to prove 
that J, and J, are not of the Fourier type. But this decomposition also suggests an 
Onsager-like relation between the coefficients obtained. 

In the linear response theory, the response coefficients are defined through the 
gradient of the p and E conjugated variables. At the NR level, taking E- '  and p-' as 
the conjugated variables (which is only a convenient choice in relation with the unit 
of measurement of 1/  T and p /  T at the statistical level), equations (27) and (32) become 

Ja =c L,,(P, E )  grad(B-')+Fa(P, E )  

L E E  = -  E 2 K b ,  E )  

L pp = -  P 2 K ( P , E )  

L,, = L,, = P K ( P ,  E ) .  

(34) 
B 

for a = E ,  p, /3 = E, p and 

(35a) 

(356) 

(35c) 
The functionals K(p,  E )  and F,(p, E ) ~ , = , , ,  are easily obtained from (27) and (32). 
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In the first-order development in powers of (E/P)  used to obtain (27) and (32), a 
reciprocal relation (35c) appears between the non-diagonal elements of L. However, 
it is not exactly the Onsager reciprocal relation, because we can continue to develop 
F,(p, E )  in powers of ( E / P )  to obtain linear terms in grad(&-') and grad(p-I). This 
development cannot be closed, but the equality (35c), LE, < 0 and L,, < 0, are conserved 
to each order. 

Another property, in relation to the last one, is that from (31) and whatever the 
initial preparation of S, if J, = 0 then J, = 0. The converse proposition is only true for 
a preparation in a stationary state. 

Concerning the second RG theorem, J, and J, are functionals of the densities only 
if the set (p, E )  is chosen. Let us examine, for example, the J, property proposed by 
RG for a TD one-body potential 

(36) 

For TI one-body potentials, results in 00 2 and 3 can be used. If (36) was true, the 
coupled equations (7) and (9) would be reduced to one equation in p. Therefore, and 
because p is real valued, the Schrodinger equation would be equivalent to an equation 
with a real valued unknown function. This is not true in general. It is only when the 
set ( p ,  E )  is chosen that J, becomes a functional of (p, E )  and then (36) must be rewritten 

( a / a t ) J , ( r ,  t )  = W ( r ,  t ) ) .  

for TI one-body potentials. 
For TD one-body potentials, all the preceding arguments are true. We have only 

to transform the results in 0 0  2 and 3 to take into ac:ount a ,TD t p n .  Short c?lculations 
for a one-body potential, with fi transformed in H( t )  = H + V,( r, t )  and V,( r, t )  the 
TD term, lead to 

Jp = -2 lo' (z E ( t ' )  + V,( t ' ) )  dt '  

J, - E 

P 
J, =-+ J, . V, (39) 

for the functionals. The conservation equation (7) is unchanged for the Vp(r, t )  
considered and the conservation equation (19) becomes 

d a 
a t  a t  
-E + V * J, = --( V, * p). 

As in the TI c y e ,  J, becomes a density functional only when the chosen set is (p ,  E). 
The TD term Vp(r, t )  can be an external perturbation term or the TD part of an effective 
one-body potential coming from a many-body potential. In this case, the set (p ,  E )  

can only be used if a development of Vp(r, t )  on (p ,  E )  exists. 

5. Conclusion 

There are at least two methods for solving a Schrodinger equation: spectral decomposi- 
tion and polar decomposition of the wavefunction. The second method gives a choice 
between four sets of unknown real valued functions defined on C, x R :  (4, e), (p, V ) ,  
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( p ,  J,) and (p ,  E ) .  In the hydrodynamic approach (p ,  V )  or ( p ,  J,)  are often used. 
However, we have shown the possibility of choosing also ( p ,  E )  because at the NR level 
J, and J, are each exact functionals of ( p ,  E ) .  This proves for TI or TD one-body 
Hamiltonians, like those studied by Runge and Gross, that Jp is not only a p functional. 

Work is now in progress to use the J, and J, decomposition on (p ,  E )  to calculate 
the response coefficients of a quantum system composed of an intermediate number 
of particles (2<< n, + n2<< i.e. to reach the reduced level with p and E as unknowns 
defined on R4. 
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